

Product Development Flow -
how to scale

beyond 20 developers

&

Verticalization

Author: Hannes Mainusch
Date: 2019-11-08, 2019-11-18
Version: 0.42 - medium rare, not well done yet
Edited by: Reshma

1

tl;dr 3

Why should we describe our future organisation? 4

What is the problem? 6
Symptoms of stuckness 7
Symptoms of health 7

What is the business aim? 9

Vertical patterns 11
Fixing the language 11
Understanding the stakeholders and business landscape 13

Example E-Commerce: 13
Customers: 13
Products: 13
Business case: 14
User journeys 14

Example Banking: 14
Example Retail in the consumer product market 14

Customers 15
Business Cases 15
support local stores with instore solutions 15
Products 15
User journeys 15

Teams to landscape mapping 16
Cross-functional teams with meaning 17
The shared nothing principle 18
Autonomous vertical team - you own it, build it, run it, fix it 19
The handling of cross cutting concerns 20

Handling of temporary cross-cutting concerns - epics that hit multiple teams 20
Handling of permanent cross-cutting concerns - what to do with shared libraries 22

vertical team-split - the cellular split pattern 23

One size does not fit all 24

The roles of management 25

Success stories 26

Summary 27

2

tl;dr
Scaling product-development organisations beyond 20 people of roughly beyond the size of two
development teams requires an understanding of how organisations work. And in the field of IT, it
requires specific experience in dealing with stuff that is hard to communicate to non-nerd
communities. The two principles that make IT-product development more difficult to organise in
comparison to typical manufacturing or service organisations are:

1. The intangibility of the product. IT people produce lines of code and lines of code are not
readable or communicatible to most non-nerd people.

2. The speed of IT evolution. IT changes so fast that it is seldom that we repeat the same thing
frequently.

Due to these two things it is hard to plan and optimize. And it is also hard to get an overview of what
everybody does in an organisation in detail. The patterns described in this article help to become fast
and adaptable company that has the fun and agility of a startup and the level of organization and
efficiency of an enterprise. At least, that’s what we’re aiming to do...

“Verticalization” is a term used in the organisation of product-development teams that has evolved
over the past years and addresses a change in the way we understand organisational and
architectural structures. In contrast to more classical organisational layouts of teams being
responsible for individual domains of technological specialisation like the traditional “operations”, “DB
& persistence”, “Network”, “Security”, “Backend-development”, “Frontend-Development”,
“Specification”, “QA” teams in classical IUT-organisations. Vertical teams combine many of these
domains in one team and orient themselves in the vertical business areas, for example “user
identification”, “shopping basket”, “product”, “Sales”, “Aftersales” in e-Commerce. Other domains, like
Retail or Banking will have other vertical teams due to their different business models.

Verticalistion has proven in various enterprises to lead to independent and autonomous teams with
high productivity. But whatever effort is made to disentangle teams, there will always be residual
team-cross-cutting concerns, like shared libraries or epics that touch multiple teams.
The remaining cross-cutting concerns in vertical organisations are dealt with in committees, tribes,
COPs or InnerSource methods and patterns. Temporary cross cutting concerns are dealt with by using
Portfolio-Kanban rather than the mulit-project-management approaches that were popular in the
1990s.

Despite being a successful and proven concept, verticalization, portfolio-kanban and the role of
management in all of this are not yet commonly understood or accepted organisational patterns.
Thus this article.

3

Why should we
describe our future organisation?
If we do not describe what we aim for explicitly, we do not give our new employees the chance to
understand what we aim for. We would not have status quo that could be improved by arguing the
cause. We would still rely on the bonfire, like an oral transmission of knowledge in team meetings of
10+ people, in the hope that all these “bonfires”, stories are being told in a traditional manner with
the same aim. We would still rely on a one boss communication from top to bottom of 100+
developers.

Luckily, this domain is over and we are at a time in history where things are documented in papers,
podcasts, videos and wikis. Only documentation settles differences by agreement and gives new hires
a chance to understand where we come from and why we are where we are now. With this
understanding comes great responsibility for solid change.

I think organisations without documentation culture are still in the stone age of prehistoric
development. When organisations with this culture deliver software, they die the death of legacy
code, workforce migration and language changes. Often enough, users later uncover the lost
knowledge with the fine and careful brushes of archaeologists in order to not destroy these fragile

4

structures of legacy in operation while trying to recover knowledge without destroying the system.
I debate the second Agile Manifesto of “working software over comprehensive documentation”. I
believe, comprehensive documentation is a prerequisite of working organisations.

5

What is the problem?
In traditional organisations we observed that the past decade of IT and product-development have
led to situations where companies have created huge central IT-Systems with millions of old and
unattained source code which becomes increasingly hard to change and maintain. At the same time
the IT workforce ages and the risk for companies to maintain their business increases. The following
list demonstrates a couple of examples of software legacy in Germany, which have crossed the
authors career in the past year:

● Automotive​: 15+ years of Java based legacy code in vital container logistics system. Source
code was deleted many years ago and documentation is sparse.

● Banking​: Central Cobol and DB2 based core banking application.
● Insurance​: 30+ year old systems running on Siemens BS2000 operating system. Contracts

on this system will still have to live for another 30+ years.
● Container Logistics​: 20+ years of Cobol based systems which have not been fully migrated

to the “new” J2EE based system which was developed in the past 10 (!) years.
● Toll collect systems​: 6 months of change iterations on 15+ years of Java systems.

These are the inspiring success stories. The various unsuccessful attempts which have been
discussed in the media are not mentioned.

At the same time, the average age of the workforce in the industry is above 42 years of age with the
Baby Boomers eagerly awaiting their coming pensions.

In most companies, this is a hidden risk to shareholders and the board of directors which is not
covered by regulatory means. The annual reports of most companies do not contain software
achievements as assets, although a simple arithmetic and comparison change within companies that
publish their digital assets achievement (e.g. XING, zalando, …) suggest that each line of source code
should be attributed with a value between 15 -35 € . 1

The methodology of change of software as an achievement has been a waterfall approach from the
organisation. A pattern that has been proven very successful in industrialisation. Organisations
optimize the critical path of trivial and easy to understand products, but in a complex and hard to
communicate environment of intangible IT-development, simple line organisations, simple divide and
conquer strategies and classical project management approaches with waterfall methodologies have
not only proven to create utter failures but left us with a legacy of critical business risks.

1
https://www.oop-konferenz.de/oop2018/programm/konferenzprogramm/sprecher-detail/johannes-mainusch.ht
ml

6

https://www.oop-konferenz.de/oop2018/programm/konferenzprogramm/sprecher-detail/johannes-mainusch.html
https://www.oop-konferenz.de/oop2018/programm/konferenzprogramm/sprecher-detail/johannes-mainusch.html

All these things have been discussed in great lengths. Over the past years many methodologies have
emerged, like the agile movement, and yet organisational solutions are still hard to come by, and
emerging success patterns in some business domains (spotify, OTTO, sipgate, …) are hard to
communicate and transfer to large and traditional enterprises. Even startups struggle to avoid the
traps of waterfall and line organisation, especially when traditional management enters the
business, the overburdened startup managers fail to evolve their expertise.

Symptoms of stuckness
Symptoms of broken product-development organisations are:

● High number of unresolved bugs
● Long running and flaky tests
● Long backlogs of old and unstarted stories
● Painful and infrequent deployments
● Production outages due to changes on the platform
● High turnover of staff and long standing open positions
● Command and control is valued over learning and gaining expertise

Symptoms of health
Symptoms of a healthy product-development organisations are:

● Zero-Bugs​: A clear understanding within all teams that bugs have to be responded to and
solved within two days

7

● Portfolio-Kanban​: A solid and transparent process for working on cross-cutting concerns
● Pull-principle​: Teams pull stories and epics, they are not pushed into them
● Operations-Monitoring​: All teams run monitors of their products in production
● Understanding team’s purpose​: The purpose of each team is easily understood by each

person in the organisation.
● Evaluation of Epics/Stories after development​. The organisation understands the value of

each produced epic and evaluates the gain of it’s anticipated worth after production of it.

So the problem is to find an organisational solution out of this chaos and to turn stuckness into
organisational health.

8

What is the business aim?
The first hint of how to organise better can be taken from IT itself, namely by understanding
Amdahl’s law of optimizing a parallel processor . 2

https://en.wikipedia.org/wiki/Amdahl%27s_law

Amdahl’s law states that the most can be gained from parallel operating systems if the programs
that run on these systems are truly independent of each other. Applying this to organisations implies
a simple truth: the setup of teams and the handout of tasks to these teams should result in
independency of one team’s work from other team’s work. If teams depend on each other, the
assembly of work would require an undisturbed production line with repeatable and known handover
points between units. Due to the complex nature of IT and the required source-code reading skills
which only developers have, this proves to be largely impossible. In other words, the efficiency of
assembly line production can only be achieved when every organiser of work is capable of
understanding every step in the process. This proves to be impossible even with only IT experts in the
game (think about Java/J2EE programmers talking to react native developers while having functional
programming experts experts in the room). Only very senior developers with limited domains, like in
large open source projects are capable of this. But with junior and non IT staff on board, this
becomes increasingly impossible.

So, if not assembly line or waterfall, what then? To get an idea of modern IT-organisations, I

2 ​https://en.wikipedia.org/wiki/Amdahl%27s_law

9

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law

recommend watching a 5 min video by John Kotter on modern organisations combining startup and
cooperate know-how . 3

While we value the efficiency of line organisations, we strive for better ways to regain effective
momentum in product-development.

So the primary business aim of verticalisation is to organise teams, communications, meetings and
initiatives in a way that leads to high autonomous teams, while organizing residual dependencies
in a transparent way to allow the organisation to optimize​. It’s not so much the independent teams
that slow down an organisation, but rather the interdependencies between teams.

3 ​https://www.youtube.com/watch?v=Pc7EVXnF2aI

10

https://www.youtube.com/watch?v=Pc7EVXnF2aI

Vertical patterns

Fixing the language
Organisations and people are communication by language. To obvious to talk about? Well, no. If you
ask people what the purpose of the company they work for is, they mostly have ahard time to
explain it in a few concise sentences. In Germany we all love the childrens TV series “Sendung mit der
Maus”, it is famous for it short movies that explain how the beans got in the can of how a Lufthansa
plane flies from Frankfurt to New York. I always thought how lucky the companies are which have tis
TV team on site producing next week’s Sunday Maus special, that will explain how the tea got in the
bags and the teabags in the package. I am sure any business with such simple helicopter view
explanations of why they exist and what they stand for and how they make a living will be well
suited to survive the next decade.

11

So why is it so difficult in product-engineering to explain what we do in simple terms? This is partly
because the terms are sometimes too simple, like “order” will mean something completely different
in e-Commerce, Retail and British Parliament. Just because we know the word does not mean we
understand it’s proper meaning in a specific business’s context. Rarely have companies good
comprehensive documentation on their processes - and a respective glossary. But talking is not so
different from programming computers. If you misspell or misuse words, organisations get buggy and
do unexpected things. The only thing is, that computers are less tolerant if you use bad language.

Fixing the [natural] language of a company involves having up-to-date process documentation,
glossaries, and time for the elaboration, of what “order”, “consignation storage location” or
“Tallyman” actually mean in the companies context. In contemporary companies with cross-cultural
teams and intercontinental locations it also involves understanding cultural differences. The same
“yes” might mean “yes” in Hannover but “no” in Mumbai. And a negotiated and closed contract might
be reopened the next day in Kairo for some minor changes.

As humans, language forms our cultures and spurs the development of societies. But in the age of
microsecond transactions and reinforcement learning algorithms replacing call center agents we
should recognise our inferiority towards the machine and try to put a conscious effort into avoiding

12

misunderstandings wherever possible.

Understanding the stakeholders and business landscape
Any business can be described by which service or product it provides for which stakeholders. One of
the very important things to organise and speed up companies is to have an easy to comprehend
and high level description of what the business business is. The algorithm is the following:

● describe the customers (in this context customers are the ones who pay money directly to
the company or have contracts with the company. Customers / Stakeholders are the people
who the verticalized organisation has to answer to. Sometimes the stakeholders are just the
customers, as in many e-commerce companies. Usually in B2B settings it is more
complicated.

● describe the business case. The business case is the point of exchanging product for money.
● describe the product(s)
● describe the user journeys. For each customer/stakeholder/user describe the things he/she

does to do business step by step. Each of these steps could be catered for later by one
vertical team.

Here are a couple of examples:

Example E-Commerce:
This is a hypothetical e-Commerce company that sells on the internet, has a partner bank that helps
by giving credit to people who have little reserves on their bank accounts.

Customers:
● Shoppers: People who buy products on the internet. It turned out that the e-Commerce

company can do a much better job of selling to customers they already know because that
way matching products to customers is easier and also payment defaults are much less
likely. It’s always good to know how much a customer can spend for new products…

● Partner Bank: customers contracts, where customers fail to pay for their purchases are being
sold to the partner bank. That reduces the profit on these customers but also uts the
payment failure risk. Also all the rate payments are handled via the partner bank.

Products:
● The product is an item from our website that can be bought. Our products have pictures,

descriptions, prices and availability.
● Our customers are also products if they enter rate payment because our rate payment

subsidiary bank earns money by handing out loans to them with rather high interest rates.

13

Business case:
With our business we can sell products to customers via the internet, get to know and distinguish
easy paying from hard paying customers and sell the hard paying customers contracts to our partner
bank. Our business case is to produce customers who buy our product.
Note: in this business case not the “product” we sell to customers is the thing that is being produced,
but the customer. Most Internet businesses produce
customers/users/shoppers/social-network-participants/advertisement-watchers but many fail to set
up the organisation properly around this production line.

User journeys
● as customer I discover a product
● put the product in my shopping basket
● check-out the product
● pay the product
● in the process I might log into my account (or not, in case of anonymous checkout)
● As user I track and trace my product
● As user I return my product
● As User I create/update/delete my user account.
● as Partner bank I get a new contract
● as Partner Bank I pay for a contract
● ...

Example Banking:
tbd

Example Retail in the consumer product market
In this example, the business is a chain of drugstore markets in EMEA. The to be verticalized
organisational unit is the product-development consisting of e-commerce, clienteling and supplying
the instore POS and warehouse systems.

14

Customers
● B2C customers in the e-commerce shop
● retail stores in EMEA
● the retail company itself for deciding about new locations and regional strategies.
● the retail companies marketing and clienteling department.

Business Cases
● Sell stuff via e-commerce,
● Support the companies’ growth strategy

○ with location data
○ with customer data

support local stores with instore solutions

Products
● Beauty-Products​: a nice mobile able e-commerce platform that allows to buy beauty

products and pick them up in-store. Future aims are home delivery, client-aware curated
shop, endless availability of upmarked products, product ratings...

● Users​: Customer data for marketing, customer retention,s and developing an upmarket
community for the diamond customers.

● Instore solutions​: POS, shipping, ware-handling
● 4D-Locations​: finding optimal drugstore locations, pop-up drugstore, need and pricing

information for special locations like airports, train stations, festivals, pop-up stores, regional
differences, seasonal differences (last years Oktoberfest & Aspin consumption

User journeys
● as B2C user I do e-Commerce (like the eight stories above)

● as retail store I receive a shipment
● as retail store I use my POS-System

● as company I want to open new stores in locations where I see a lot of e-commerce but no

shop nearby
● as company I want to send vouchers/catalogues to my premium customers
● as company I want to discover new product strategies with my diamond customer base

——
In reality, these cases should be better defined and agreed upon by a group of relevant product and

15

engineering staff and then brought to the attention of the whole company. This way we will get a
nice simple picture of what the company is doing.

Teams to landscape mapping
This is theoretically the easy bit. Just map a team to each of the user journeys. In reality, some of
the user journeys can get big. In mobile e-Commerce it is hard to split vertically frontend to backend.
A vertical should ideally own all systems and processes for their piece of user story frontend to
backend.

16

Cross-functional teams with meaning
Team names and team manifestos
communicate the purpose of the team to
the outside world. Earlier, teams had names
like “Research and Development”. At the
formerly huge company Northern Electric,
the abbreviation of this particular
department name, the Northern Electric
Research and Development, short N.E.R.D.
That’s where the infamous word ​nerds
comes from.

Teams names and their purpose should be
understandable to the whole organisation.
So, naming teams after colors, animals,
TV-series or anything else unrelated to
areas of business or process can be

17

rendered an antipattern. Teams should have names that will allow the CFO of a company to
understand and remember their purpose. This way it becomes clear to the whole organisation, to
whom feature requests of bugs have to be assigned. So „payment“ is better than „magenta“ and
„clienteling“ is a lot better than „A-Team“.

To even understand better who is in a team, what IT-services belong to a team, what the history of a
team is and what they like on their pizza, it is recommended that teams write and publish their own
team manifestos. That will also allow new team members to quickly orient themselves.

More subtle changes that organisations experience when moving to “meaningful teams” is, that
when customers require new features they automatically land in the responsible teams. I have seen
multiple companies that assign the next topic on the list to their next free feature team, resulting in
big entangled monolithic underlying systems with no logical separation of concerns. Organisational
structures with teams not bound to businessy domains usually very quickly result in monolithic IT and
very sluggish processes. There, they are hard to change and fix.

The cross-functionality of teams is well known from agile structures and seldom debated today which
is good. Organisations that still have their Requirements-engineering, Development, QA or DevOps in
separate teams are usually slow and produce and maintain monolithic IT systems. This is for the
same reasons as mentioned above. Their teams have no meaningful alignment with the business
purpose of the company and no easy way to separate concerns and systems.

The shared nothing principle
The shared nothing principle is directly derived from applying the above mentioned Amdahl’s law to
organisational patterns. It tries to identify and eliminate things that are shared between teams. This
is because anything shared with another team invokes the risk of needing to wait for the shared
resource to be free for use. Shared things can be:

● libraries, that need to be changed
● experts who work in multiple teams
● QA servers for regression tests that are being blocked by other teams tests
● meeting rooms, that are not available due to sprint changes
● DB-Servers that exist only once in an organisation...

18

There are a lot more things that are shared in organisations. The reason for sharing are usually,
because the shared things are expensive to procure for each team. In the 1990s this was true for
servers and databases but today this is untrue. Sometimes architects and developers like to
encapsulate complicated IT into libraries to make things “easier” or “more standardised” for general
usage. But studies have shown that the average library reiuse in enterprises is well below 1.5. This
means out of three libraries less than two are actually shared in practice. If you think you can do
better with your libraries, you are usually mistaken. Only very few people are good in creating and
maintaining shared libraries. They usually work for organisations like the Apache Foundation or other
large open source bodies. So beware, creating and maintaining shared stuff should be done by at
least three cooperating and very senior experts. ​If you think you can do that by yourself you are
most likely delusional and need help!

Autonomous vertical team - you own it, build it, run it, fix it
This is pure devops culture. The team can only be truly autonomous if it is in charge of the whole
product lifecycle. And in order for the product to be small enough to do a good job we cut the big

19

product in nice small vertical slices.

The handling of cross cutting concerns
Although verticalization aims at removing the classical horizontal layers in the organization and
operating product-development in teams with meaningful names and domains, there will always be
residual cross-cutting concerns. Since cross-cutting concerns hinder the independence of teams they
have to be dealt with with special care. There are two types of cross-cutting concerns:

1. temporary cross cutting concerns like Projects or epics that require more than one team to
work on them.

2. long standing cross cutting concerns without definite end dat like the maintenance of shared
libraries or Frontend-frameworks like e.g. react-native for mobile clients.

Here are best practices how to handle them differently. The general Pattern of ​cross-cutting
concerns have clear ownership​ has to be applied.

Handling of temporary cross-cutting concerns - epics that hit multiple teams
Epics that hit multiple teams can be elegantly handled with a portfolio-kanban approach. On this
kanban board every epic appears on on card, that also shows the involved teams. This way, all the
involved teams can see, whether they are the one team that possibly causes the card to be stuck in
the process. Temporary cross cutting concerns have to be done by all involved teams in parallel. This
is the reason, why kanban is an ideal process for handling them.

20

21

Handling of permanent cross-cutting concerns - what to do with shared
libraries
tl;dr
→ SIGs
→ innerSource patterns

Cross cutting concerns like e.g. shared libraries should be handled (by citation of Stefan Tilkov) with
the professionality and process of open source libraries. Some companies actually open sourced their
shared stuff on github to fulfil this request. One working pattern is to pull people from all affected
teams into a Special Interest Group (​SIG​) an operate this group with open source organisational
patterns. E.g. split the responsibilities in that group into committers (people with commit rights)
developers (people who submit pull requests) and follow for example the patterns used by large
open source bodies like apache (​https://www.apache.org/foundation/how-it-works.html​) or other well
established open source communities.

Usually these groups formally meet once a week and keep their own backlog.

22

https://www.apache.org/foundation/how-it-works.html

vertical team-split - the cellular split pattern

Further patterns only loosely related to verticalization like the learning organization, attracting
experts...

23

One size does not fit all
One of the principles that our organisation recently came up with is, that vertical teams should be
colocated. Everybody agreed and it was obvious to me that verticalization is the key to distributed
development with then colocated vertical teams. It is true that distributed teams suffer due to
communication overhead, different cultures at the locations, time zones and many other difficulties.
So thanks to my personal experience at companies like XING or Deutsche Post I know colocation is a
lot easier than distribution. It would be a small step from here to the statement “​distributed teams
do not work​”. When I recently asked Mark * who is the tech-lead of a distributed team how we could
get his team to become colocated e.g. by swapping people with other teams he said, “but why, our
distributed team works just fine”. So after some arguing I realized my prejudice and we tried to find
out, why their distributed team works just fine. He answers were:

● we frequently meet at one location
● the distribution is somehow balanced with no major site that has most of the people
● we just made it work

So I had to realised, that although colocation is a good pattern that by trying to enforce the same
pattern to every team

1. we almost lost the ability to discover something new
2. we almost destroyed a working team (never change a running system ;-))

So the learning here is, that although common practices and pattern are good to structure the
organization it is also good to always rethink your own perspective and allow for difference. Because
innovation is something that we all do not know yet. Otherwise we would have already implemented
it, right?

24

The roles of management
Management has to setup and maintain this kind of organisation. They have to care for the difficult
decisions on how to prioritize cross-cutting concerns and facilitate the communication and establish a
fearless ambitious learning culture. They have to fill in the gaps that are not properly structured yet.
And they have to team down the walls legacy- super-structures from the past. They have to avoid
micro-management at all cost but yet deliver a solid operating product to the customer. They have to
foster innovation. They have to secure the future of the company.

If successful, the ideal of management is to become superfluous. I always liked the statement of the
captain of the HMS Enterprise (omega tau Podcast), a British Navy vessel when asked, what his job 4

as the most senior officer on board is, whenever someone goes overboard. This question was posed
during a “man overboard” training manoeuvre, where the captain seemingly did nothing to help the
situation. His answer war: “To do nothing is what I do.“ When asked why he answered: “There is
always something else that could happen just now that would need my attention.”

4 ​https://omegataupodcast.net/277-life-and-work-on-hms-enterprise/

25

https://omegataupodcast.net/277-life-and-work-on-hms-enterprise/

Success stories
The otto.de story (in german, sry) is here:
https://www.heise.de/developer/artikel/Johannes-Mainusch-otto-de-wie-die-Titanic-den-Eisberg-verf
ehlte-3491223.html

The NewStore story has yet to be told:

26

https://www.heise.de/developer/artikel/Johannes-Mainusch-otto-de-wie-die-Titanic-den-Eisberg-verfehlte-3491223.html
https://www.heise.de/developer/artikel/Johannes-Mainusch-otto-de-wie-die-Titanic-den-Eisberg-verfehlte-3491223.html

Summary
It is great to work with nerds and technicians and it is great to work in product development. Why?
Because this is where rapid development takes place and where new technologies emerge. As nerds
we are an elite who are extremely well paid and can choose the most promising jobs. But being an
elite also comes with responsibility to make the best of it. This is why we strive for better
organisations and products that make sense to a world that demands for products with sense.

This is why we decide to

1. use bikes over airplanes
2. democracy over hippo rules 5

3. not to build the 47th million of cars but rather invest our skills to smaller more elegant
footprints

4. learn to innovate our status quo rather than living in the fear of having no pension scheme

… or do we now?

Hannes

5 hippo = highest paid person’s opinion

27

